Document log: Day 1: Initial audit(21st June 2021), Day 2: Final Audit(pending)
SCOPE
The git-repository shared was checked for common code violations along with vulnerability-specific probing to detect major issues/vulnerabilities. Some specific checks are as follows:
Code review
Functional review
Reentrancy
Unchecked external call
Business Logics Review
Ownership Takeover
ERC20 API violation
Functionality Checks
Timestamp Dependence
Unchecked math
Access Control & Authorization
Gas Limit and Loops
Unsafe type inference
Escrow manipulation
DoS with (Unexpected) Throw
Implicit visibility level
Token Supply manipulation
DoS with Block Gas Limit
Deployment Consistency
Asset’s integrity
Transaction-Ordering Dependence
Repository Consistency
User Balances manipulation
Style guide violation
Data Consistency
Kill-Switch Mechanism
Costly Loop
Operation Trails & Event Generation
AUDIT REPORT
Executive Summary
The analysis indicates that the contracts audited are secured and follow the best practices.
Our team performed a technique called “Filtered Audit”, where the contract was separately audited by two individuals. After their thorough and rigorous process of manual testing, an automated review was carried out using Slither, and Manticore. All the flags raised were manually reviewed and re-tested.
Our team found:
# of issues
Severity of the risk
0
Critical Risk issue
0
High-Risk issue
0
Medium Risk issue
1
Low-Risk issue
FINDINGS
Critical-risk issues
No critical issues found
High-risk issues
No issues were found.
Medium-risk issues
No issues found
Low-risk issues
1. Lock pragma versions
Contracts should be deployed with the same compiler version and flags that they have been tested with thoroughly. Locking the pragma helps to ensure that contracts do not accidentally get deployed using, for example, an outdated compiler version that might introduce bugs that affect the contract system negatively.
The smart contracts provided by the client for audit purposes have been thoroughly analyzed in compliance with the global best practices till date w.r.t cybersecurity vulnerabilities and issues in smart contract code, the details of which are enclosed in this report.
This report is not an endorsement or indictment of the project or team, and they do not in any way guarantee the security of the particular object in context. This report is not considered, and should not be interpreted as an influence, on the potential economics of the token, its sale or any other aspect of the project.
Crypto assets/tokens are results of the emerging blockchain technology in the domain of decentralized finance and they carry with them high levels of technical risk and uncertainty. No report provides any warranty or representation to any third-Party in any respect, including regarding the bug-free nature of code, the business model or proprietors of any such business model, and the legal compliance of any such business. No third-party should rely on the reports in any way, including for the purpose of making any decisions to buy or sell any token, product, service or other asset. Specifically, for the avoidance of doubt, this report does not constitute investment advice, is not intended to be relied upon as investment advice, is not an endorsement of this project or team, and it is not a guarantee as to the absolute security of the project.
Smart contracts are deployed and executed on a blockchain. The platform, its programming language, and other software related to the smart contract can have its vulnerabilities that can lead to hacks. The scope of our review is limited to a review of the Solidity code and only the Solidity code we note as being within the scope of our review within this report. The Solidity language itself remains under development and is subject to unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond Solidity that could present security risks.
This audit cannot be considered as a sufficient assessment regarding the utility and safety of the code, bug-free status or any other statements of the contract. While we have done our best in conducting the analysis and producing this report, it is important to note that you should not rely on this report only - we recommend proceeding with several independent audits and a public bug bounty program to ensure security of smart contracts.
Unipilot is an automated liquidity manager designed to maximize ”in-range” intervals for capital through an optimized rebalancing mechanism of liquidity pools. Unipilot V2 also detects the volatile behavior of the pools and pulls liquidity until the pool gets stable to save the pool from impairment loss.
Flower Fam is an NFT-based project, after you mint your NFT you can “harvest” them on weekly bases to get 60% royalties. It's quite simple: every flower has a 10% chance to win. The rarer the species of a flower.
Unipilot Staking is a Staking infrastructure built on Ethereum, a reliable and scalable L1 solution. The staking solution offered by Unipilot provides the stakers a way to get incentives.